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Abstract—Crowd counting and forecasting is an important
problem amidst Covid 19 circumstances. A unified system to
automate crowd monitoring, collect data about crowdedness and
predict future crowds is presented in this paper. An evalua-
tion of existing state-of-the-art crowd counting algorithms on
a novel dataset is conducted in the first part of the paper,
which demonstrates the shortcomings of these algorithms. Several
novel algorithms, including a densely connected neural network,
convolutional neural network, and a long short term memory
based recurrent neural network, for predicting crowd counts
in the near and distant future are presented afterwards in the
second half of the paper.

Index Terms—Crowd counting, Crowd population forecasting,
Evaluation

I. INTRODUCTION

Crowd counting and forecasting using computer vision
techniques have become important in recent years for a wide
variety of applications such as smart transportation systems [1]
[2], video surveillance and it has become even more important
in the recent after COVID-19 spread. Crowd counting and
having datasets about the population information can help in
estimating the scale of the crowd at social events and all
sorts of public spaces which can be used for better controlling
of crowds and better division of resources overall. This can
help the authorities in the process of taking necessary steps
to control the spread of the virus and also to minimize
resurgences of coronavirus cases.

The objective of this paper was to propose a unified system
to automate crowd monitoring, collect data about the crowd
count, and predict the crowd count in both the near and
distant future. To accomplish this, Closed Circuit Television
Video (CCTV) footage was used, as they are a common sight
around the world and are highly suited for observing crowd
patterns [3]. The first step was to obtain the crowd count,
i.e. the number of people present in an area covered by a
CCTV camera, by using deep learning based models. Several
such models, which have been trained on large datasets, were
evaluated in this study using a dataset of our own.

The second half of this paper focuses on forecasting the
crowd present at a given location. This was done for two cases,
predicting the crowdedness at any given date and time and
predicting the crowd variation in the next 15 hours. A Dense

Neural Network (DNN) and a Convolutional Neural Network
(CNN) were discussed and compared for the first case. For the
second case a Long Short-Term Memory (LSTM) network was
used, and it was compared to a baseline model.

II. RELATED WORK

A. Crowd Counting

There have been various approaches for crowd counting
such as object-level crowd counting [4] [5], regression-based
crowd counting [6], pixel-based crowd counting [7] [8] [9],
density contribution probability estimation [10]. Most of the
preceding crowd counting methods were mainly based on the
detection of people’s bodies and faces [11], [12] and object
detectors were sometimes used for such purposes and other
attempts for object identification, enhancement under dynamic
backgrounds had also been made [13]. But these types of de-
tectors failed to detect the crowds accurately due to occlusion
and the many different arrangements of the origins of images.
Furthermore, bounding-box annotations were needed to train
these models, which was very labour-intensive. In order to
avoid this, a direct count regression approach was introduced.
Here, a regression model was trained to learn a direct mapping
from image features to crowd count. In most of the crowd
counting datasets, each person is annotated by a pixel at the
center of the head. Therefore, the pixel level point supervisions
can’t be fully utilized by the direct count regression-based
models. To overcome this issue, the density map approach
was proposed by Lempitsky and Zisserman [14]. Here, the
pixel-level annotations are transformed into a density map
using a Gaussian kernel. In the present, density estimation
techniques have been utilized to surpass the more traditional
approaches based on classical regressors using CNN based
models. A CNN with the two target outputs crowd count and
crowd density maps, was proposed by Zhang et al. [7]. Further
developments using CNNs were proposed in [8] and [9] using
MCNN (Multi-Column Convolutional Neural Network) and
Switching Convolutional Neural Network (SCNN) respec-
tively. Complex loss functions were used in these models
and the performance was determined by the quality of the
generated ground-truth density maps.



In the recent, better crowd counting models & loss func-
tions [10] [15] have been introduced. As an example, to
minimize the complexity of the loss function and improve
the performance, a loss function that constructs a density
contribution probability model [10] using the point annotations
was introduced. Therefore, more definitive supervision on the
expected value of the count at each annotated point was
acquired. But, if these models were to be used for crowd
counting at any place, these models will be predicting counts
for images from different distributions than what they have
been trained on. Therefore, the performance of such models
against a new dataset is tested in section III to validate the use
of these models in real world applications.

B. Crowd Count Forecasting

Crowd forecasting is a frequently addressed problem in the
field of computer vision and social computing. One approach
for forecasting crowd behaviour has been to use big public data
for prediction [16]. This approach analyses content published
on web sources including social media to make predictions
about crowds at public events. Another approach taken has
been to use location based social networks to predict the
number of visitors to a set of given locations [17] and
attempts to analyze & cluster motion patterns in videos [18]
has also been made. Mobile crowd-sensing has also become
increasingly popular with the increased use of smartphones
and this has been done by using either GPS data or mobile
location data of users [19]. Another very popular approach to
mobile crowd-sensing is to use the number of public WiFi
users as a measure of the crowd present at a given location,
and use this data in an LSTM to predict future variations of the
crowd [20]. The third approach to forecasting crowd density is
to use CCTV surveillance footage, to obtain crowd data [21].
All of these work focus on either forecasting crowd presence
in the near future, or predicting crowd count at a given date,
but a framework to combine these crowd counting methods
to create datasets on the crowd population & forecasting
models for both the near & distant future predictions have not
been proposed. Datasets can be created by converting CCTV
footage into images with an appropriate sampling rate along
the time axis and these images can be used to create data
logs about the human occupancy at any location to be used
for forecasting as discussed in section IV. Such attempts [22]
[23] to create datasets by stacking images along the frequency
axis have also been made. Therefore, an integrated framework
that incorporates these sections is introduced in this paper.

III. EXPERIMENTS - CROWD COUNTING MODEL
EVALUATION

A. Evaluated Models

Bayesian Loss for Crowd Count Estimation with Point
Supervision [10]. Here, the VGG19 [24] architecture except
for the last max-pooling and fully connected layers, has been
utilized as the backbone of the model. The output of the
backbone has been fed to a regression header with 3 convo-
lutional layers. The Bayesian loss function with background

pixel modeling which acquires more authentic supervision on
the expected value of the crowd count at each annotated point
has been used in this model.

SS-DCNet [15]. An encoder and a decoder, based on VGG16
[24] and UNet [25] respectively have been used in this model
to address the open set and closed set problem natures of
the crowd counting problem. A supervised approach has been
taken by this model by dividing the image and taking counts
in those sub-regions for better generalization of the problem.

B. Evaluation Metrics

The metrics, Mean Absolute Error (MAE) and the Root
Mean Squared Error (RMSE), given by equations 1 and 2,
were used in the evaluation stage of chosen crowd counting
models [10], [15].

MAE =
1

ntest

ntest∑
i=1

|ypred(i) − ytrue(i)| (1)

RMSE =

√√√√ 1

ntest

ntest∑
i=1

|ypred(i) − ytrue(i)|
2 (2)

and ntest, ytrue(i) & ypred(i) represent the number of
datapoints in the test set, predicted value of the ith test item &
the actual/ground truth value of the ith test item respectively.

C. Datasets

In this section, the models from SS-DCNet [15] &
BAYESIAN+ [10] that were previously trained on Shang-
haiTech [26] and UCF QNRF [27] were evaluated using the
VET Hospital Dataset.

ShanghaiTech [26] consists of two parts, A and B. Part A
(SH A) has 300 images for training and 182 images for testing
and Part B (SH B) has 400 images for training and 316 images
for testing.

UCF QNRF [27] consists of high quality 1,535 jpeg images
collected from various sources. The training and the test sets
consist of 1201 and 334 images respectively and these images
cover over 1.25 million point annotations.

VET Hospital Dataset was created by us for the evaluation
of the crowd counting models listed above, using footage
collected from a single CCTV camera from the Veterinary
Teaching Hospital, Faculty of Veterinary Medicine & Animal
Science, University of Peradeniya. The dataset consists of
1570 images of (2304 × 1296) resolution with a total of
16718 annotations. The images were collected with 30-second
intervals from 0700 hours to 1800 hours and all the images
were collected from the same camera angle & orientation.
Both sparse & dense crowd scenes and a small portion of
images of the empty premises are also included in the dataset.
A majority of these images contain dogs & this helped
to evaluate how the models handle animals during crowd
counting. The faces of individuals in Fig. 1 were censored
to maintain anonymity.



The dataset was collected amidst post-covid circumstances.
Thus, all the people in these images were wearing masks, face
shields and even Personal Protective Equipment (PPE) in some
occasions as shown in Fig. (1.i.a), (1.ii.a), (1.iii.a) & (1.iv.a).
Such footage was useful in evaluating the performance of the
crowd counting models in detecting people against the new
post-Covid-19 health regulations.

D. Model Evaluation

The publicly available models & weights of both SS DCNet
1 [15] and BAYESIAN+ 2 [10] were used in the evaluation
process. The experimental results of all six models against
the VET Hospital Dataset are listed in Table I where the best
overall result is highlighted in bold. The published results of
the models for the datasets that they were initially trained
on are shown in Table II, where the best for each dataset is
highlighted in bold.

Comparing the results in Table I with the results in Table
II, all these models except the BAYESIAN+ model which had
been trained on the SH A dataset, outperformed other models
in generalizing to the situation and recognizing the crowds
against the VET Hospital Dataset.

Despite the low MAE and RMSE values, it was observed
that the models consistently miscalculated some aspects of
the images in the VET Hospital Dataset. Those points are
discussed with the aid of density maps generated for five
chosen images shown in the Fig. 1 as (i.a), (ii.a), (iii.a), (iv.a)
& (v.a).

Commending results were not achieved by the publicly
available BAYESIAN+ model trained on SH A. As illustrated
by the images in column (b) of Fig. 1, the entropy map
generated by this model has noise all over the entropy map
which has resulted in an overestimation of the crowd count.

People wearing masks/ face shields have been identified by
the models successfully as shown best by the density maps
of (1.ii.a). Workers wearing white color PPE covering their
heads can be seen in sub-figures (i.a), (ii.a), (iii.a), (iv.a) of
Fig. 1, and the BAYESIAN+ model & SS-DC model trained
on the SH B dataset have failed to identify all occurrences
of such workers as shown in the images in columns (c) and
(f) of Fig. 1. However, BAYESIAN+ model & SS-DC model
trained on the the SH A dataset have detected those workers
in some occasions [(1.i.b), (1.i.e), (1.iii.e)] and some have
missed out [(1.ii.b), (1.iii.b), (1.iv.b), (1.ii.e), (1.iv.e)]. Out
of the three datasets, the models which had been trained on
UCF QNRF have detected many of such workers. It can be
seen that training on a dataset [27] with a huge variety and
a large number of annotations has made the models better at
recognizing people with unusual clothing than those that were
trained on SH A and SH B. This is also evident as the SS-
DC [15] model that has been trained on the UCF QNRF [27]
has achieved the best overall MAE & RMSE both as shown
in Table I.

1https://github.com/xhp-hust-2018-2011/SS-DCNet
2https://github.com/ZhihengCV/Bayesian-Crowd-Counting

TABLE I: Comparison of the performance of evaluated models
against the VET Hospital Dataset

Initially trained
on dataset SH A SH B UCF-QNRF

Metrics MAE RMSE MAE RMSE MAE RMSE
SS-DC 2.930 5.492 3.937 5.241 2.425 3.197
BAYESIAN+ 68.853 69.764 3.039 3.879 4.362 5.335

TABLE II: Comparison of the performance against their
respective trained datasets

Datasets
Metrics

SH A
MAE RMSE

SH B
MAE RMSE

UCF-QNRF
MAE RMSE

SS-DC 56.1 88.9 6.6 10.8 81.9 143.8
BAYESIAN+ 62.8 101.8 7.7 12.7 88.7 154.8

When the dogs present in the range of [0-40] of the x-axis
and [60-100] of the y-axis in (i.a), (ii.a), (iii.a), (iv.a) of Fig. 1
are considered, every model has identified and added the dogs
into the crowd count at least on one occasion. Especially, the
dogs have been detected by the BAYESIAN+ model trained
on UCF QNRF at every instant. Considering the dark fur of
the dogs in the images, there is a high chance of the dogs
being identified by these models as they have been trained to
identify the heads of people. For example, the SS-DC model
trained on SH B has resulted in two false-positive spots for
the dog in (1.i.a).

Clusters have been identified in most of the images and a
count more than the actual amount has been predicted from
those regions. In the Fig. (1.iv.e) the SS-DC model trained
on SH A has identified a cluster in the mid-section of the
image. The model had predicted 82.994 as the output of this
image while the ground truth was only 17, making an error
of 65.994. The same miscalculations can be seen in images
with people far away from the camera. Despite these errors,
the error metrics have achieved low values as the overall score
for the entire dataset due to this compensation of missing out
people in some places and predicting a larger value than the
actual count in the cluster areas.

Fig. (1.v.a) is an image of the empty room and the density
maps generated for this image as shown the imperfections
of these models clearly. A majority of these models have
identified the cleaning equipment & sink, ceiling/fans and the
dustbin respectively in the x-axis & y-axis ranges of [(80-100),
(40-60)], [(60-80), (0-20)], [(40-60), (80-100)] of Fig. (1.v.a).
The SS-DC model trained on SH A was the only model that
has not identified the sink or the fans, but it has identified
the aluminium block present in [(0-20),(0-40)] Fig. (1.v.a)
as illustrated by the maps in the column (e). Therefore, it
was evident that these models tended to miscalculate common
objects as humans quite often.

IV. EXPERIMENTS - CROWD COUNT FORECASTING

In this section, a novel DNN & CNN, mainly for distant
future predictions, and a LSTM network for near future pre-
dictions are proposed and tested for crowd count forecasting.



(i.a) (i.b) (i.c) (i.d) (i.e) (i.f) (i.g)

(ii.a) (ii.b) (ii.c) (ii.d) (ii.e) (ii.f) (ii.g)

(iii.a) (iii.b) (iii.c) (iii.d) (iii.e) (iii.f) (iii.g)

(iv.a) (iv.b) (iv.c) (iv.d) (iv.e) (iv.f) (iv.g)

(v.a) (v.b) (v.c) (v.d) (v.e) (v.f) (v.g)

Fig. 1: Density maps generated for five chosen images from VET Hospital Dataset. Warmer the color, higher the density. The
images in the row (i) in Fig. 1 correspond to the results obtained for the image (i.a). The results of the BAYESIAN+ models
trained on SH A, SH B, UCF QNRF are illustrated by the images in the columns (b), (c), (d) respectively and the results of
the SS-DC models trained on SH A, SH B, UCF QNRF are illustrated by the images in the rows (e), (f), (g) respectively.
The same pattern is applied for the images (ii.a), (iii.a), (iv.a), (v.a).

A. Evaluation Metrics

For the Evaluation of the DNN, CNN & LSTM Networks,
Mean Absolute Error (MAE) given in the equation (1) and
Root Mean Squared Error (RMSE) in the equation (2) were
used.

B. Datasets

Crowdedness at the Campus Gym [28] was used for the
evaluation of the forecasting models.

Crowdedness at the Campus Gym [28] dataset consists of
the data about the number of people that were present inside
a campus gym over the course of 19 months and the data
had been collected in rough intervals of 10 minutes. The
maximum crowd count was 145 and the mean crowd count
of the preprocessed dataset was 38.3192.

C. Data Preprocessing for DNN and CNN

The focus of this section was to predict the crowd popula-
tion during working hours and to get a better idea about its
crowd population patterns. Therefore, the data collected during
the night from 2300 hours to 0800 hours were removed from
the dataset used for the training and testing. Another reason
for this removal was the tendency of the networks to always
predict very low values since the majority of the crowd count
recorded at night had been either zero or one. For the DNN,
the day of week label was replaced with additional labels
for each of the hours, days & months, and then the dataset
was normalized. The preprocessed dataset had 41 features.
This inclusion of extra features gave an advantage with the
results and the new labels were: number of people, timestamp,
day of week (categorical), hour (categorical), month (categor-
ical), weekend (binary), holiday (binary), temperature, start of
semester (binary), during semester (binary).



D. Data Preprocessing for LSTM

A similar preprocessing technique was used for constructing
the sequential data for training the LSTM. Data collected
during the night from 2300 hours to 0800 hours was removed
to balance the dataset. The dataset contained samples taken at
roughly 10-minute intervals. The time was converted to a sine
cosine pair to capture its cyclic nature. The final labels were:
number of people, year, month, day, time (sin & cos format),
day of week, temperature. Sequences consisting of 15 hours
of inputs and 15 hours of labels were constructed.

E. Novel DNN Architecture

Our proposed DNN consists of 12 layers. The input is
a (1 × 41) vector. It is followed by two 128 node layers,
two 256 node layers, two 512 node layers, two 256 node
layers, and three 128 node layers before the output layer which
outputs the expected crowd count. Activation functions and
hyperparameters were chosen by experimentation. Exponential
Linear Unit (ELU) was chosen as the activation function of the
first hidden layer, last hidden layer, and the output layer while
Rectified Linear Unit (ReLU) was chosen for the remaining
nine hidden layers. RMSprop was chosen as the optimization
function with a learning rate of 0.001 and a mini batch size
of 64.

F. Novel CNN Architecture

The CNN architecture in Fig. 2 was used to forecast
the crowd count. To extract features, eight one-dimensional
convolutional layers with a filter size of 64 followed by a
flatten layer were used. The extracted feature vector was fed
into a neural network of 3 dense layers. All the layers utilized
a Rectified linear unit (ReLU) activation function. Here, max-
pooling layers were not used since the down-sampling effect
of max-pooling layers tended to miss out on information and
reduced the performance of the model.

The adam optimizer with a mini batch size of 32 gave the
best outcome for the dataset, as extensive mini batch sizes and
RMSprop lessened the performance of the model.

G. Novel LSTM Network

An LSTM network with several densely connected layers
showed the best results in forecasting the crowd count. As
shown in Fig. 3 the 8 input features were fed into an LSTM
layer to generate 64 features. This was followed by another
LSTM layer with 64 outputs which then fed into two con-
secutive 64 node densely connected layers, each utilizing a
ReLU activation function. The output was obtained through
another densely connected layer of size 54, which generated
the expected crowd count variation for the next 15 hours.
During the training process, the adam optimizer was used with
a learning rate of 0.001 and a mini-batch size of 32.

H. Preformance comparison of the models

The outputs of the models were rounded off to the nearest
integer to acquire the crowd count forecast.
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Fig. 2: Proposed CNN Architecture
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8
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Fig. 3: Proposed LSTM Network Architecture

As depicted in Table III, it is possible to observe a better
MAE and MSE for predictions with the CNN as opposed to the
DNN. This is because CNNs are less sensitive to the amount
of preprocessing done on the dataset compared to a DNN, as
discussed by Jernelv et. al [29].

The LSTM was compared with a baseline model for predict-
ing the near future crowd counts as a time series. The baseline
model simply assumed that the crowd count for the next 15
hours was identical to the previous 15 hours, and gave a MAE
of 24.31. In comparison, the LSTM was able to recognize and
predict 15-hour variations in the data with a MAE of 8.50,
which is considerably less.

V. CONCLUSION AND FUTURE PERSPECTIVES

The performance of crowd counting models and their short-
comings in crowd identification were discussed in the first part
of this paper. It was clear that these models tend to mistake
common objects as humans and training on bigger datasets
containing images with more diverse scenes & more common
day-to-day objects could result in better performances. The rest
of the paper was focused on the types of models that can be
used to create predictive models for both the near and distant

TABLE III: Comparison of the performance of Crowd Count
Forecasting models with VET Hospital Dataset

Method DNN CNN LSTM Baseline
MAE 6.20 5.53 8.50 24.31
RMSE 8.88 7.57 11.31 28.48



future. Observing the results of the predictive models showed
that the lack of information about special events and about the
days the gym was closed has lessened the overall performance.
As an example, when the premises were closed or filled with
people because of a special event on an otherwise typical day,
the training becomes less intuitive as the information about
the closing of the gym or about the special event was not
available. Therefore, including such information is essential
for better results when creating such datasets in the future. As
mentioned in the introduction, creating a unified model with
(i) a crowd counting model, (ii) a format to log the information
about the parameters that could affect the crowd count, (iii)
creating models as discussed in the Section IV to predict the
crowd population in near and distant future can be beneficial in
many areas. Gathering of census and statistics, crowd pattern
information collection & analyzing, and crowd controlling in
a pandemic situation are such examples. Such a system can be
further enhanced to collect information about other types of
objects that can be identified using density mapping such as
plantations, animals, vehicle population & occurrence patterns
as well.
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